Certification Program in Machine Learning and Generative AI

Key Highlights

Program Outline

  • Introduction to Python
  • Data Structures: List, Tuples, Sets, Dictionary Packages & Modules
  • Iterators Generators 
  • Functions & argument variations, decorators
  • Data types and variables
  • Control structures and loops
  • Functions and modules
  • Object-Oriented Programming Concepts
  • Control flows
  • Classes and Objects
  • Exceptions
  • Introduction to SQL and NoSQL databases
  • Schema 
  • Joins 
  • GroupBy 
  • Index 
  • Connecting & Querying with Python
  • Calculus
  • Linear Algebra
  • Probability
  • Statistics
  • Numpy
  • Pandas
  • Matplotlib
  • Selection
  • Extraction
  • Classification
  • Regression Capacity
  • Overfitting
  • Underfitting
  • Hyper parameters
  • Validation sets
  • SVM, K-Nearest, Naive Bayes, Decision Tree, Random Forest
  • Principal Components Analysis
  • K-means clustering, Stochastic Gradient Descent
  • Text Representation
  • Embeddings
  • Feed forward Neural network
  • Optimizers
  • Back Propagation
  • Multi Layer perceptrons
  • Features for Perceptrons
  • PyTorch
  • Tensor
  • Keras
  • Convolutional Neural Networks(CNN)
  • Autoencoders
  • Recurrent Neural Network (RNN)
  • Simple RNN
  • LSTM RNN
  • Attention & Transformers.
  • BERT, GPT, Hugging face
  • Prompt Engineering
  • Langchain
  • RAG
  • Finetuning

Languages and Tool Set covered